Каждый момент неповторим... (Лозунг фотографа)

Дифракция света известна с 19 века и связана с волновой природой электромагнитного излучения, к которому относится и свет. Суть этого явления такова, что полностью избежать его влияния на качество фотографии невозможно, во всяком случае, на современном этапе развития физики, поэтому часто говорят о дифракционном пределе резкости снимка. Но учесть специфику дифракционных эффектов и попытаться уменьшить их вредное воздействие вполне реально.

Дифракция света - распространение волн на воде - прохождение через щель

Дифракция света проявляется в том, что при встрече с любым препятствием, световая волна отклоняется от прямолинейного движения и начинает это препятствие огибать. Это очень легко заметить, если понаблюдать за волнами на воде. После успокаивающего созерцания водяных волн станет очевидным и другой немаловажный факт: чем меньше отверстие, через которое проходит волна, тем больше она рассеивается.

Применительно к фотографии это означает, что дифракция света сильнее всего портит изображение при сильно закрытых диафрагмах, то есть именно тогда, когда увеличивается глубина резкости. Возникает такой парадокс, что наше желание получить в кадре как можно больше резких деталей приводит к обратному результату – резкость наоборот падает.

Именно здесь и возникает задача найти оптимальный баланс между глубиной резкости и ухудшением качества изображения из-за дифракции света. Иными словами, надо определить ту диафрагму, которая обеспечит нужную глубину резкости и при этом сохранится общая резкость кадра, в противном случае, глубину то мы получим, но резкость пропадет. Эту задачу мы и будем сейчас решать.

Дифракция света и критерий Рэлея

Дифракция света - кружок рассеяния в виде диска Эйри

Проходя через объектив, свет фокусируется на матрице и возникает изображение, которое затем преобразуется в фотографию. Если мы фотографируем точку, то в идеальном случае мы хотели бы получить и точку на матрице. Тут-то все и портит дифракция света. Как бы хорошо не были скомпенсированы оптические аберрации объектива, мы увидим не точку, а размытый кружок рассеяния с максимумом в центре и расположенными вокруг него интерференционными кольцами, возникающими из-за наложения световых волн.

Если фотографировать две рядом расположенные точки, то из-за дифракции на матрице получатся два кружка рассеяния, и при уменьшении расстоянии между точками, в какой-то момент кружки сольются, и мы вообще не сможем понять, сфотографировали мы две точки или одну. Это и есть дифракционный предел резкости, который определяется так называемым критерием Рэлея.

Дифракция света - определение критерия Рэлея

Согласно критерию Рэлея считается, что два дифракционных кружка рассеяния воспринимаются зрением как два в том случае, если между их максимумами расположен минимум с интенсивностью на 20% меньше. В противном случае они не разрешаются, т. е. глаз будет видеть их как один.

Дифракция света и диафрагма фотоаппарата

Дифракция света - объемное представление интенсивности света в диске Эйри

Таким образом, дифракция света приводит к тому, что изображение точки, которое строит объектив, становится размытым, даже если объектив не имеет аберраций и точно на нее сфокусирован. Поскольку объектив и диафрагма имеют круглую форму, то точка приобретает вид нерезкого круга, который называется диском Эйри, в честь английского астронома, открывшего это явление. Нас интересует размер диска Эйри, поскольку именно он будет ограничивать резкость фотографии.

Но как определить размер диска, который имеет размытые края? Для этого наиболее разумно исходить из того, чтобы две точки на матрице воспринимались именно как две, т. е. удовлетворяли критерию Рэлея. Рассчитанный по критерию Рэлея диаметр диска Эйри D можно определить по формуле

Дифракция света - формула 1

где λ – длина волны прошедшего через объектив света (обычно берется зеленый свет 500 нм (= 0,0005 мм)), K – диафрагменное число.

Обратите внимание на такую особенность. Выше мы говорили, что дифракция света сильнее проявляется при малых размерах отверстия, через которое проходит световая волна. В формуле же [1] присутствует только K – диафрагменное число, а не абсолютный размер диафрагмы. В этом нет никакого противоречия, поскольку уменьшение размера диска Эйри при увеличении физического размера диафрагмы компенсируется пропорциональным его увеличением за счет фокусного расстояния, т. е. зависит только от относительного отверстия объектива, обратная величина которого и есть диафрагменное число, или просто значение диафрагмы.

Полученный результат в виде формулы [1] уже можно использовать на практике, поскольку он точно показывает, как зависит размер кружка рассеяния от диафрагмы объектива. И теперь на первое место выходит матрица.

Дифракция света и размер пикселя

Именно характеристики матрицы, а конкретно размер пикселя, определяет ту предельную диафрагму, при которой дифракция света еще не оказывает влияния на резкость. Если диаметр диска Эйри меньше размера пикселя, то разрешение системы объектив – матрица определяется матрицей (характеристики которой мы изменить не можем). А вот если больше, то диафрагмой (которую мы можем менять), что хорошо видно из соотношения [1]. Когда диаметр диска Эйри становится больше размера пикселя,  дальнейшее закрытие диафрагмы приводит только к ухудшению резкости изображения.

Рассмотрим пример. Как было показано в статье про резкость в фотографии, размер пикселя матрицы формата DX (кроп фактор 1,52, 12 МПикс) фотоаппарата Nikon составляет 0,0055 мм. Определим по формуле [1] предельную диафрагму, которая еще не ухудшает резкость снимка:

Дифракция света - формула 2

Таким образом, для такой матрицы использование диафрагм больше f/9 нецелесообразно, поскольку вместо улучшения качества за счет увеличения глубины резкости, мы получим размытие из-за дифракции. Можно легко рассчитать, что для небольших компактных камер с маленькими матрицами дифракционные эффекты начинают проявляться уже на диафрагмах 4 – 5,6.

Мы получили удивительный результат! Такое объективное физическое явление как дифракция света проявляет себя в фотографии в полной зависимости от искусственно спроектированной матрицы. Говорит ли это о том, что мы можем победить дифракцию, создавая все более совершенные матрицы? Ни в коем случае. Как только размер пикселя станет равным диску Эйри на полностью открытой диафрагме идеального (т. е. без аберраций) объектива, дальнейшее наращивание «мегапиксельности» матрицы станет теоретически бессмысленным.

Дифракция света и современный фотоаппарат

Чтобы проиллюстрировать сказанное, приведу снимки испытательной миры, сделанные фотоаппаратом Nikon с матрицей, характеристики которой мы рассматривали выше. Съемка производилась на диафрагмах f/9 (которую мы получили в примере),  f/16 и  f/25.

Дифракция света - вид испытательной миры на диафрагме f/9 Дифракция света - вид увеличенного фрагмента испытательной миры на диафрагме f/9

Дифракция света - вид испытательной миры на диафрагме f/16 Дифракция света - вид увеличенного фрагмента испытательной миры на диафрагме f/16

Дифракция света - вид испытательной миры на диафрагме f/25 Дифракция света - вид увеличенного фрагмента испытательной миры на диафрагме f/25

Хорошо видно, что диафрагма f/9 действительно дает наиболее резкое изображение. При f/16 резкость все еще удовлетворительная, хотя если посмотреть внимательнее, то на самых мелких штрихах заметно слабое размытие. А вот f/25 никуда не годится. Мелкие штрихи разрешаются уже на пределе, а общая контрастность снимка заметно падает.

Несмотря на результаты теста, во многих случаях имеет смысл пожертвовать общей резкостью снимка, но получить одинаково резкими и передний и задний планы, например, на той же диафрагме 22. Исходя из практики, можно сказать, что для зеркальных камер предельные диафрагмы находятся в интервале 8 – 11, а для компактов 4 – 8 и этого вполне достаточно, чтобы достичь приемлемой глубины резкости без дифракционного ухудшения качества изображения. Кроме того, большинство объективов в указанных интервалах диафрагм дают наилучшее качество изображения, поскольку влияние аберраций на таких диафрагмах уже незначительно, а дифракционное размытие еще пренебрежимо мало.

Мы рассмотрели идеальный случай с точки зрения теории, в предположении, что у объектива отсутствуют аберрации. На самом деле при съемке приходится учитывать множество самых разнообразных факторов. Это и наличие штатива, и освещенность объекта и скорость его перемещения, и художественный замысел автора, и многое, многое другое. Такое знание приобретается только с опытом, поэтому точно сказать, что при предельной диафрагме 9 нельзя использовать 22, будет неправильным, но что касается максимальной резкости, то здесь дифракция света влияет однозначно, и учитывать ее надо обязательно.